Deep Learning in Image Computing: An Overview
نویسنده
چکیده
Deep learning is a growing trend in computing. It is an improvement to artificial neural network. Deep Neural Networks are used in image classification, detection and segmentation. In this paper, an overview is carried out about the usage of deep neural network in various areas of image computing including image quality assessment, document imaging, object recognition, medical imaging, content based image retrieval and microscopy images with representative notable works in these areas. These works reveal that promising results are emerging with the help of deep learning architecture. Keywords— Deep Learning, CNN, LSTM, RNN, CBIR, Image quality assessment, Document Images, Object Recognition, Medical Images, Microscopy Images.
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملInfant Head Circumference Measurement Using Deep Learning Techniques
Infant's head circumference measurement and and its growth monitoring plays a crucial role in diagnosis the diseases which cause a deformation in the infant's head. Due to the fact that the contact measurement, which is performed using a tape measure and a caliper, has problems such as transmitting disease, infecting, not comfortable and disruption relaxing the baby, going to non-contact measur...
متن کامل